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Computer Arithmetic 
 

INTEGER NUMBERS 
 

UNSIGNED INTEGER NUMBERS 

 𝑛 − 𝑏𝑖𝑡 number: 𝑏𝑛−1𝑏𝑛−2 … 𝑏0. 
 Here, we represent 2𝑛 integer positive numbers from 0 to 2𝑛 − 1. 

 

SIGNED INTEGER NUMBERS 
 𝑛-bit number 𝑏𝑛−1𝑏𝑛−2 … 𝑏1𝑏0. 

 Here, we represent integer positive and negative numbers. There exist three common representations: sign-and-magnitude, 
1’s complement, and 2’s complement. In these 3 cases, the MSB always specifies whether the number is positive (MSB=0) 
or negative (MSB=1). 

 It is common to refer to signed numbers as numbers represented in 2’s complement arithmetic. 
 

SIGN-AND-MAGNITUDE (SM): 
 Here, the sign and the magnitude are represented separately. 
 The MSB only represents the sign and the remaining 𝑛 − 1 bits the magnitude. With 𝑛 bits, we can represent 2𝑛 − 1 numbers. 
 Example (n=4): 0110 = +6 1110 = -6 

 
1'S COMPLEMENT (1C) and 2’S COMPLEMENT (2C): 
 If MSB=0  the number is positive and the remaining 𝑛 − 1 bits represent the magnitude. 

 If MSB=1  the number is negative and the remaining 𝑛 − 1 bits do not represent the magnitude. 

 When using the 1C or the 2C representations, it is mandatory to specify the number of bits being used. If not, assume the 
minimum possible number of bits. 
 

 1’S COMPLEMENT 2’S COMPLEMENT 

Range of values −2𝑛−1 + 1 𝑡𝑜 2𝑛−1 − 1 −2𝑛−1 𝑡𝑜 2𝑛−1 − 1 

Numbers represented 2𝑛 − 1 2𝑛 

Inverting sign of a 
number 

Apply 1C operation: invert all bits Apply 2C operation: invert all bits and add 1 

Examples 

 +6=0110  -6=1001 

 +5=0101  -5=1010 

 +7=0111  -7=1000 

 +6=0110  -6=1010 

 +5=0101  -5=1011 

 +7=0111  -7=1001 

 If -6=1001, we get +6 by applying the 1C 

operation to 1001  +6 = 0110. 

 If -6=1010, we get +6 by applying the 2C 

operation to 1010  +6 = 0110. 

 Represent -4 in 1C: We know that 
+4=0100. To get -4, we apply the 1C 

operation to 0100. Thus, -4 = 1011. 

 Represent -4 in 2C:  We know that 
+4=0100. To get -4, we apply the 2C 

operation to 0100. Thus -4 = 1100. 

 Represent 8 in 1C: This is a positive 
number  MSB=0. The remaining 𝑛 − 1 

bits represent the magnitude.  
Magnitude (unsigned number) with a min. 
of 4 bits: 8=10002. Thus, with a minimum 

of 5 bits, 8=010002 (1C). 

 What is the decimal value of 1100? We 

first apply the 1C operation (or take the 1’s 
complement) to 1100, which results in 

0011(+3). Thus 1100=-3. 

 Represent 12 in 2C: This is a positive number 
 MSB=0. The remaining 𝑛 − 1 bits 

represent the magnitude. 
Magnitude (unsigned number) with a min. of 
4 bits: 12=11002. Thus, with a minimum of 

5 bits, 12=011002 (2C). 

 What is the decimal value of 1101? We first 

apply the 2C operation (or take the 2’s 
complement) to 1101, which results in 

0011(+3). Thus 1101=-3. 

 
Getting the decimal value of a number in 2C representation: 
 If the number 𝐵 is positive, then MSB=0: 𝑏𝑛−1 = 0.  

→ 𝐵 = ∑ 𝑏𝑖2𝑖

𝑛−1

𝑖=0

= 𝑏𝑛−12𝑛−1 + ∑ 𝑏𝑖2𝑖

𝑛−2

𝑖=0

= ∑ 𝑏𝑖2𝑖

𝑛−2

𝑖=0

  (𝑎) 

 If the number 𝐵 is negative, 𝑏𝑛−1 = 1 (MSB=1). If we take the 2’s complement of 𝐵, we get 𝐾 (which is a positive number). 
In 2’s complement representation, 𝐾 represents −𝐵. Using 𝐾 = 2𝑛 − 𝐵 (𝐾 and 𝐵 are treated as unsigned numbers): 
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∑ 𝑘𝑖2𝑖

𝑛−1

𝑖=0

= 2𝑛 − ∑ 𝑏𝑖2𝑖

𝑛−1

𝑖=0

 

 We want to express  – 𝐾 in terms of 𝑏𝑖, since the integer value – 𝐾 is the actual integer value of 𝐵. 

−𝐾 = − ∑ 𝑘𝑖2𝑖

𝑛−1

𝑖=0

= ∑ 𝑏𝑖2𝑖

𝑛−1

𝑖=0

− 2𝑛 = 𝑏𝑛−12𝑛−1 + ∑ 𝑏𝑖2𝑖

𝑛−2

𝑖=0

− 2𝑛 = 2𝑛−1(𝑏𝑛−1 − 2) + ∑ 𝑏𝑖2𝑖

𝑛−2

𝑖=0

 

𝐵 = −𝐾 = 2𝑛−1(1 − 2) + ∑ 𝑏𝑖2𝑖

𝑛−2

𝑖=0

= −2𝑛−1 + ∑ 𝑏𝑖2𝑖

𝑛−2

𝑖=0

 (𝑏) 

 Using (a) and (b), the formula for the decimal value of 𝐵 (either positive or negative) is: 

𝐵 = −𝑏𝑛−12𝑛−1 + ∑ 𝑏𝑖2𝑖

𝑛−2

𝑖=0

 

 Examples:  101102 = −24 + 22 + 21 = −10  110002 = −24 + 23 = −8 

 
SUMMARY 
 The following table summarizes the signed representations for a 4-bit number: 

n=4: 

b3b2b1b0 

SIGNED REPRESENTATION 

Sign-and-magnitude 1’s complement 2’s complement 
0 0 0 0 

0 0 0 1 

0 0 1 0 

0 0 1 1 

0 1 0 0 

0 1 0 1 

0 1 1 0 

0 1 1 1 

1 0 0 0 

1 0 0 1 

1 0 1 0 

1 0 1 1 

1 1 0 0 

1 1 0 1 

1 1 1 0 

1 1 1 1 

 0 

 1 

 2 

 3 

 4 

 5 

 6  

 7 

 0 

-1 

-2 

-3 

-4 

-5 

-6 

-7 

 0 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

-7 

-6 

-5 

-4 

-3 

-2 

-1 

 0 

 0 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

-8 

-7 

-6 

-5 

-4 

-3 

-2 

-1 

Range for 𝑛 bits: [−(2𝑛−1 − 1), 2𝑛−1 − 1] [−(2𝑛−1 − 1), 2𝑛−1 − 1] [−2𝑛−1, 2𝑛−1 − 1] 

 
 Keep in mind that 1C (or 2C) representation and the 1C (or 2C) operation are very different concepts. 
 Note that the sign-and-magnitude and the 1C representations have a redundant representation for zero. This is not the case 

in 2C, which can represent an extra number. 
 Special case in 2C: If −2𝑛−1 is represented with 𝑛 bits, the number 2𝑛−1requires 𝑛 + 1 bits. For example, the number -8 

can be represented with 4 bits: -8=1000. To obtain +8, we apply the 2C operation to 1000, which results in 1000. But 

1000 cannot be a positive number. This means that we require 5 bits to represent +8=01000. 

 Representation of Integer Numbers with 𝒏 bits: 𝑏𝑛−1𝑏𝑛−2 … 𝑏0. 

 

 UNSIGNED SIGNED (2C) 

Decimal Value 𝐷 = ∑ 𝑏𝑖2𝑖

𝑛−1

𝑖=0

 𝐷 = −2𝑛−1𝑏𝑛−1 + ∑ 𝑏𝑖2𝑖

𝑛−2

𝑖=0

 

Range of values [0, 2𝑛 − 1] [−2𝑛−1, 2𝑛−1 − 1] 

 

SIGN EXTENSION 

 UNSIGNED NUMBERS: Here, if we want to use more bits, we just append zeros to the left. 
Example: 12 = 11002 with 4 bits. If we want to use 6 bits, then 12 = 0011002. 

 
 SIGNED NUMBERS: 

 Sign-and-magnitude: The MSB only represents the sign. If we want to use more bits, we append zeros to the left, 
with the MSB (leftmost bit) always being the sign. 

Example: -12 = 111002 with 5 bits. If we want to use 7 bits, then -12 = 10011002. 

 
 2’s complement (also applies to 1C): In many circumstances, we might want to represent numbers in 2's complement 

with a certain number of bits. For example, the following two numbers require a minimum of 5 bits: 
101112 = −24 + 22 + 21 + 20 = −9  011112 = 23 + 22 + 21 + 20 = +15 
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What if we want to use 8 bits to represent them? In 2C, we sign-extend: If the number is positive, we append 0’s to the 
left. If the number is negative, we attach 1’s to the left. In the examples, we copied the MSB three times to the left: 

111101112 = −24 + 22 + 21 + 20 = −9 000011112 = 23 + 22 + 21 + 20 = +15 

 
Demonstration of sign-extension in 2C arithmetic: 
 To increase the number of bits for representing a number, we append the MSB to the left as many times as needed: 

𝑏𝑛−1𝑏𝑛−2 … 𝑏0  𝑏𝑛−1 … 𝑏𝑛−1𝑏𝑛−1𝑏𝑛−2 … 𝑏0 

Examples: 001012 = 00001012 = 22 + 20 = 5 
  101012 = 11101012 = −24 + 22 + 20 = −26 + 25 + 24 + 22 + 20 = −11 

 
We can think of the sign-extended number as an 𝑚-bit number, where 𝑚 > 𝑛: 

𝑏𝑛−1 … 𝑏𝑛−1𝑏𝑛−1𝑏𝑛−2 … 𝑏0 = 𝑏𝑚−1 … 𝑏𝑛𝑏𝑛−1𝑏𝑛−2 … 𝑏0, where: 𝑏𝑖 = 𝑏𝑛−1, 𝑖 = 𝑛, 𝑛 + 1, … , 𝑚 − 1 

 
 We need to demonstrate that 𝑏𝑛−1𝑏𝑛−2 … 𝑏0 represents the same decimal number as  𝑏𝑛−1 … 𝑏𝑛−1𝑏𝑛−1𝑏𝑛−2 … 𝑏0, i.e., that the 

sign-extension is correct for any 𝑚 > 𝑛. 

We need that: 𝑏𝑚−1 … 𝑏𝑛𝑏𝑛−1𝑏𝑛−2 … 𝑏0 = 𝑏𝑛−1 … 𝑏𝑛−1𝑏𝑛−1𝑏𝑛−2 … 𝑏0 = 𝑏𝑛−1𝑏𝑛−2 … 𝑏0  
 
Using the formula for 2's complement numbers: 

−2𝑚−1𝑏𝑚−1 + ∑ 2𝑖𝑏𝑖

𝑚−2

𝑖=0

= −2𝑛−1𝑏𝑛−1 + ∑ 2𝑖𝑏𝑖

𝑛−2

𝑖=0

 

−2𝑚−1𝑏𝑚−1 + ∑ 2𝑖𝑏𝑖

𝑚−2

𝑖=𝑛−1

+ ∑ 2𝑖𝑏𝑖

𝑛−2

𝑖=0

= −2𝑛−1𝑏𝑛−1 + ∑ 2𝑖𝑏𝑖

𝑛−2

𝑖=0

  − 2𝑚−1𝑏𝑚−1 + ∑ 2𝑖𝑏𝑖

𝑚−2

𝑖=𝑛−1

= −2𝑛−1𝑏𝑛−1 

−2𝑚−1𝑏𝑛−1 + 𝑏𝑛−1 ∑ 2𝑖

𝑚−2

𝑖=𝑛−1

= −2𝑛−1𝑏𝑛−1, 

𝑅𝑒𝑐𝑎𝑙𝑙:   ∑ 𝑟𝑖

𝑙

𝑖=𝑘

=
𝑟𝑘 − 𝑟𝑙+1

1 − 𝑟
, 𝑟 ≠ 1 → ∑ 2𝑖

𝑙

𝑖=𝑘

=
2𝑘 − 2𝑙+1

1 − 2
= 2𝑙+1 − 2𝑘 

Then: 
−2𝑚−1𝑏𝑛−1 + 𝑏𝑛−1(2𝑚−1 − 2𝑛−1) = −2𝑛−1𝑏𝑛−1 
−2𝑚−1𝑏𝑛−1 + 2𝑚−1𝑏𝑛−1 − 2𝑛−1𝑏𝑛−1 = −2𝑛−1𝑏𝑛−1 ∴ −2𝑛−1𝑏𝑛−1 = −2𝑛−1𝑏𝑛−1 

 
 

ADDITION/SUBTRACTION 
 
UNSIGNED NUMBERS 
 The example depicts addition of two 8-bit numbers using binary 

and hexadecimal representations. Note that every summation 
of two digits (binary or hexadecimal) generates a carry when 
the summation requires more than one digit. Also, note that c0 
is the carry in of the summation (usually, c0 is zero).  

 The last carry (c8 when n=8) is the carry out of the summation. 
If it is ‘0’, it means that the summation can be represented with 
8 bits. If it is ‘1’, it means that the summation requires more 
than 8 bits (in fact 9 bits); this is called an overflow. In the 
example, we add two numbers and overflow occurs: an extra 
bit (in red) is required to correctly represent the summation. 
This carry out can also be used for multi-precision addition. 

 

Arithmetic Overflow: 
 Suppose we have only 4 bits to represent binary numbers. Overflow 

occurs when an arithmetic operation requires more bits than the bits 
we are using to represent our numbers. For 4 bits, the range is 0 to 15. 
If the summation is greater than 15, then there is overflow. 

 
 For 𝑛 bits, overflow occurs when the sum is greater than 2𝑛 − 1. Also: 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 = 𝑐𝑛 = 𝑐𝑜𝑢𝑡. 

Overflow is commonly avoided by sign-extending the two operators. For unsigned numbers, sign-
extension amounts to zero-extension. For example, if the summands are 4-bits wide, then we append 
a 0 to both summands, using 5 bits to represent the summands (see figure on the right). 

 
 For two 𝑛-bits summands, the result will have at most 𝑛 + 1 bits (2𝑛 − 1 + 2𝑛 − 1 = 2𝑛+1 − 2). 

 

0x3F = 0 0 1 1 1 1 1 1 +

0xB2 = 1 0 1 1 0 0 1 0

0xF1 = 1 1 1 1 0 0 0 1

c 8
=0

c 7
=0

c 6
=1

c 5
=1

c 4
=1

c 3
=1

c 2
=1

c 1
=0

c 0
=0

3 F +

B 2

F 1
c 2

=0
c 1

=1
c 0

=0

0x3F =  0 0 1 1 1 1 1 1 +

0xC2 =  1 1 0 0 0 0 1 0

c 8
=1

c 7
=1

c 6
=1

c 5
=1

c 4
=1

c 3
=1

c 2
=1

c 1
=0

c 0
=0

3 F +

C 2

c 2
=1

c 1
=1

c 0
=0

1 0 0 0 0 0 0 0 1 1 0 1

01011 +

00110

10001

cout=0

0101 +

1001

1110

cout=0
No Overflow

1011 +

0110

10001

cout=1

Overflow!
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Subtraction: 
 In the example, we subtract two 8-bit numbers using the 

binary and hexadecimal (this is a short-hand notation) 
representations. A subtraction of two digits (binary or 
hexadecimal) generates a borrow when the difference is 
negative. So, we borrow 1 from the next digit so that the 
difference is positive. Recall that a borrow in a subtraction of 
two digits is an extra 1 that we need to subtract. Also, note 
that b0 is the borrow in of the summation. This is usually zero. 

 The last borrow (b8 when n=8) is the borrow out of the 
subtraction. If it is zero, it means that the difference is positive 
and can be represented with 8 bits. If it is one, it means that 
the difference is negative and we need to borrow 1 from the 
next digit. In the example, we subtract two 8-bit numbers, the 
result we have borrows 1 from the next digit.  

 
 Subtraction using unsigned numbers only makes sense if the result is positive (or when doing multi-precision subtraction). 

In general, we prefer to use signed representation (2C) for subtraction. 

  
SIGNED NUMBERS (2C REPRESENTATION) 
 The advantage of the 2C representation is that the summation can be carried out using the same circuitry as that of the 

unsigned summation. Here the operands can be either positive or negative. 
 The following are addition examples of two 4-bit signed numbers. Note that the carry out bit DOES NOT necessarily indicate 

overflow. In some cases, the carry out must be ignored, otherwise the result is incorrect. 
 
 
 
 
 
 
 
 Now, we show addition examples of two 8-bit signed numbers. The carry out c8 is not enough to determine overflow. Here, 

if c8≠c7 there is overflow. If c8=c7, no overflow and we can ignore c8. Thus, the overflow bit is equal to c8 XOR c7. 
 

 Overflow: It occurs when the summation falls outside the 2’s complement range for 8 bits: [−27, 27 − 1]. If there is no 

overflow, the carry out bit must not be part of the result. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 To avoid overflow, a common technique is to sign-extend the two 

summands. For example, for two 4-bits summands, we add an 
extra bit; thereby using 5 bits to represent the operators.  

 
 
 

+7 = 0 0 1 1 1 +

+2 = 0 0 0 1 0

+9 = 0 1 0 0 1  

-7 = 1 1 0 0 1 +

-2 = 1 1 1 1 0

-9 = 1 0 1 1 1 

c 5
=0

c 4
=0

c 3
=1

c 2
=1

c 1
=0

c 0
=0

c 5
=1

c 4
=1

c 3
=0

c 2
=0

c 1
=0

c 0
=0

+14  [-27, 27-1] -> no overflow

overflow = c8c7=1 -> overflow!

+170  [-27, 27-1] -> overflow!

+92 = 0 1 0 1 1 1 0 0 +

+78 = 0 1 0 0 1 1 1 0

+170 = 0 1 0 1 0 1 0 1 0

c 8
=0

c 7
=1

c 6
=0

c 5
=1

c 4
=1

c 3
=1

c 2
=0

c 1
=0

c 0
=0

overflow = c8c7=1 -> overflow!

-170  [-27, 27-1] -> overflow!

-92 = 1 0 1 0 0 1 0 0 +

-78 = 1 0 1 1 0 0 1 0

-170 = 1 0 1 0 1 0 1 1 0

c 8
=1

c 7
=0

c 6
=1

c 5
=0

c 4
=0

c 3
=0

c 2
=0

c 1
=0

c 0
=0

overflow = c8c7=0 -> no overflow

+92 = 0 1 0 1 1 1 0 0 +

-78 = 1 0 1 1 0 0 1 0

+14 = 1 0 0 0 0 1 1 1 0

c 8
=1

c 7
=1

c 6
=1

c 5
=1

c 4
=0

c 3
=0

c 2
=0

c 1
=0

c 0
=0

overflow = c8c7=0 -> no overflow

-92 = 1 0 1 0 0 1 0 0 +

+78 = 0 1 0 0 1 1 1 0

-14 = 0 1 1 1 1 0 0 1 0

c 8
=0

c 7
=0

c 6
=0

c 5
=0

c 4
=1

c 3
=1

c 2
=0

c 1
=0

c 0
=0

-14  [-27, 27-1] -> no overflow

+5 = 0101 +

+2 = 0010

+7 = 0111  

cout=0

-5 = 1011 +

+2 = 0010

-3 = 1101 

cout=0

+5 = 0101 +

-2 = 1110

+3 =10011 

cout=1

-5 = 1011 +

-2 = 1110

-7 =11001 

cout=1

0x3A = 0 0 1 1 1 0 1 0 -

0x2F = 0 0 1 0 1 1 1 1

0x0B = 0 0 0 0 1 0 1 1

b
8=

0
b

7=
0

b
6=

0
b

5=
0

b
4=

1
b

3=
1

b
2=

1
b

1=
1

b
0=

0

3 A -

2 F

0 B

b
2=

0
b

1=
1

b
0=

0

0x3A = 0 0 1 1 1 0 1 0 -

0x75 = 0 1 1 1 0 1 0 1

b
8=

1
b

7=
1

b
6=

0
b

5=
0

b
4=

0
b

3=
1

b
2=

0
b

1=
1

b
0=

0

3 A -

7 5

b
2=

1
b

1=
0

b
0=

0

0xC5 = 1 1 0 0 0 1 0 1 C 5
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Subtraction 
 Note that 𝐴 − 𝐵 = 𝐴 + 2𝐶(𝐵). To subtract two signed (2C) numbers, 

we first apply the 2’s complement operation to 𝐵 (the subtrahend), and 

then add the numbers. So, in 2’s complement arithmetic, subtraction 
ends up being an addition of two numbers. 

 

 For an 𝑛-bit number, overflow occurs when the summation/addition 
result is outside the range [−2𝑛−1, 2𝑛−1 − 1]. The overflow bit can quickly be computed as 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 = 𝑐𝑛𝑐𝑛−1. 𝑐𝑛 = 𝑐𝑜𝑢𝑡. 

 

 The largest value (in magnitude) of addition of two 𝑛-bits operators is −2𝑛−1 + (−2𝑛−1) = −2𝑛. In the case of subtraction, 

the largest value (in magnitude) is −2𝑛−1 − (2𝑛−1 − 1) = −2𝑛 + 1. Thus, the addition/subtraction of two 𝑛-bit operators 

needs at most 𝑛 + 1 bits. 𝑐𝑛 = 𝑐𝑜𝑢𝑡 is used in multi-precision addition/subtraction. 
 

SUMMARY 
 Addition/Subtraction of two 𝑛-bit numbers: 

 UNSIGNED SIGNED (2C) 

Overflow bit 𝑐𝑛 𝑐𝑛𝑐𝑛−1 

Overflow occurs when: 𝐴 + 𝐵[0, 2𝑛 − 1],   𝑐𝑛 = 1 (𝐴 ± 𝐵)[−2𝑛−1, 2𝑛−1 − 1],    𝑐𝑛𝑐𝑛−1 = 1 

Result range: [0, 2𝑛+1 − 1] 𝐴 + 𝐵 ∈ [−2𝑛, 2𝑛 − 2],  𝐴 − 𝐵 ∈ [−2𝑛 + 1, 2𝑛 − 2] 

Result requires at most: 𝑛 + 1 𝑏𝑖𝑡𝑠 

 
 In general, if one operand has 𝑛 bits and the other has 𝑚 bits, the result will have at most 𝑚𝑎𝑥(𝑛, 𝑚) + 1. When adding 

both numbers, we first force (via sign-extension) the two operators to have the same number of bits: 𝑚𝑎𝑥(𝑛, 𝑚). 

 

MULTIPLICATION OF INTEGER NUMBERS 

 
UNSIGNED NUMBERS 

 Simple operation: first, generate the products, then add up all the columns (consider the carries). 
 
 
 
 
 
 
 
 
 
 
 
 If the two operators are 𝑛-bits wide, the maximum result is (2𝑛 − 1) × (2𝑛 − 1) = 22𝑛 − 2𝑛+1 + 1. Thus, in the worst case, 

the multiplication requires 2𝑛 bits.  
 If one operator in 𝑛-bits wide and the other is 𝑚-bits wide, the maximum result is: (2𝑛 − 1) × (2𝑚 − 1) = 2𝑛+𝑚 − 2𝑛 − 2𝑚 +

1. Thus, in the worst case, the multiplication requires 𝑛 + 𝑚 bits. 
 
SIGNED NUMBERS (2C) 
 A straightforward implementation consists of checking the sign of the multiplicand and multiplier. If one or both are negative, 

we change the sign by applying the 2’s complement operation. This way, we are left with unsigned multiplication. 
 As for the final output: if only one of the inputs was negative, then we modify the sign of the output. Otherwise, the result 

of the unsigned multiplication is the final output. 
 
 
 
 
 
 
 
 
 
 
 Note: If one of the inputs is −2𝑛−1, then when we change the sign we get 2𝑛−1, which requires 𝑛 + 1 bits. Here, we are 

allowed to use only 𝑛 bits; in other words, we do not have to change its sign. This will not affect the final result since if we 

were to use 𝑛 + 1 bits for 2𝑛−1, the MSB=0, which implies that the last row is full of zeros. 

0 0 1 x

0 1 0  

0 0 0  

0 0 1    

0 0 0      

0 0 0 0 1 0  

0 1 1 x

0 1 0  

0 0 0  

0 1 1    

0 0 0      

0 0 0 1 1 0  

1 1 1 x

1 1 0

1 0 1 x

0 1 0  

0 1 1 x

0 1 0  

0 0 0  

0 1 1    

0 0 0      

0 0 0 1 1 0  

1 1 1 0 1 0

0 1 0 x

0 1 0  

0 0 0  

0 1 0    

0 0 0      

0 0 0 1 0 0  

0 1 0 x

1 1 0

1 1 1 1 0 0

+7 = 0 1 1 1 +

-3 = 1 1 0 1

+4 = 0 1 0 0  

cout = 1
overflow = 0

7 - 3 = 7 + (-3):

+3=0011  -3=1101

c 4
=1

c 3
=1

c 2
=1

c 1
=1

c 0
=0

1 0 1 1 x

1 1 0 1  

1 0 1 1  

0 0 0 0    

1 0 1 1      

1 0 1 1        

1 0 0 0 1 1 1 1  

a3    a2    a1    a0 x

b3    b2    b1    b0

a3b0 a2b0 a1b0 a0b0
a3b1 a2b1 a1b1 a0b1

a3b2 a2b2 a1b2 a0b2
a3b3 a2b3 a1b3 a0b3

p7    p6    p5   p4    p3    p2    p1    p0

11 x

13  

---

143  

1 1 0 1 x

1 1 1 1  

1 1 0 1  

1 1 0 1    

1 1 0 1      

1 1 0 1        

1 1 0 0 0 0 1 1  

13 x

15  

---

195  

1
0

 

1
0

 

1
0

 
1

 1
 

1
 

1
 

1
 

0
 

0
 

0
 

0
 

1
 

0
 

0
 

0
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 Note: If one input is negative and the other is positive, we can use the negative 

number as the multiplicand and the positive number as the multiplier. Then, we can 
operate as if it were unsigned multiplication, with the caveat that we need to sign 
extend each partial sum to 2𝑛 bits (if both operators are 𝑛-bits wide), or to 𝑛 + 𝑚 (if 

one operator is 𝑛-bits wide and the other is 𝑚-bits wide). 

 
 
 
 
 For two 𝑛-bit operators, the final output requires 2𝑛 bits. Note that it is only because of the multiplication −2𝑛−1 × −2𝑛−1 =

22𝑛−2 that we require those 2𝑛 bits (in 2C representation). 

 For an 𝑛-bit and an 𝑚-bit operator, the final output requires 𝑛 + 𝑚 bits. Note that it is only because of the multiplication 
−2𝑛−1 × −2𝑚−1 = 2𝑛+𝑚−2 that we require those 𝑛 + 𝑚 bits (in 2C representation). 

 

DIVISION OF INTEGER NUMBERS 
 
UNSIGNED NUMBERS 

 The division of two unsigned integer numbers 𝐴
𝐵⁄  (where 𝐴 is the dividend and 𝐵 the divisor), results in a quotient 𝑄 and 

a remainder 𝑅, where 𝐴 = 𝐵 × 𝑄 + 𝑅. Most divider architectures provide 𝑄 and 𝑅 as outputs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 For 𝑛-bits dividend (𝐴) and 𝑚-bits divisor (𝐵): 

 The largest value for 𝑄 is 2𝑛 − 1 (by using 𝐵 = 1). The smallest value for 𝑄 is 0. So, we use 𝑛 bits for 𝑄. 

 The remainder 𝑅 is a value between 0 and 𝐵 − 1. Thus, at most we use 𝑚 bits for 𝑅.  
 If 𝐴 = 0, 𝐵 ≠ 0, then 𝑄 = 𝑅 = 0. 

 If 𝐵 = 0, we have a division by zero. The result is undetermined. 

 
 In computer arithmetic, integer division usually means getting 𝑄 = ⌊𝐴 𝐵⁄ ⌋. 
 
 Examples: 
 
 
 
 
 
 
 
 
 
 
 

1 0 0 x

0 1 1  

1 0 0  

1 0 0    

0 0 0      

0 0 1 1 0 0  

1 0 0 x

0 1 1  

1 1 0 1 0 0

0 1 1 x

1 0 0  

0 0 0  

0 0 0    

0 1 1      

0 0 1 1 0 0  

0 1 1 x

1 0 0

1 1 0 1 0 0

1 0 0 x

1 0 0  

0 0 0  

0 0 0    

1 0 0      

0 1 0 0 0 0  

1 0 0 x

1 0 0

1 0 0 1 x

0 1 1 0

1 0 0 1 x

0 1 1 0  

0 0 0 0 0 0 0 0  

1 1 1 1 0 0 1    

1 1 1 0 0 1      

0 0 0 0 0        

1 1 0 1 0 1 1 0  

00001111

10011101

1010

10011

1010

10010

1010

10001

1010

111

1010

00000111

10100001

10101

100110

10101

100011

10101

1110

10101

000010100

110100010

10100

11000

10100

10010

10100

000000111

101010001

101110

1001100

101110

111101

101110

1111

101110

157/10:

Q = 15

R = 7

161/21:

Q = 7

R = 14

418/20:

Q = 20

R = 18

337/46:

Q = 7

R = 15

00001111

10001100

1001

10001

1001

10000

1001

1110

1001

101

1001 AB

Q

R

ALGORITHM

R = 0

for i = n-1 downto 0

left shift R (input = ai)

if R  B

qi = 1, R  R-B

else

qi = 0

end

end

15

140

90

50

45

5

9 AB

Q

R
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SIGNED NUMBERS 

 The division of two signed numbers 𝐴 𝐵⁄  should result in 𝑄 and 𝑅 such that 𝐴 = 𝐵 × 𝑄 + 𝑅. As in signed multiplication, we 

first perform the unsigned division 
|𝐴|

|𝐵|⁄  and get 𝑄’ and 𝑅’ such that: |𝐴| = |𝐵| × 𝑄′ + 𝑅′. Then, to get 𝑄 and 𝑅, we apply: 

 

 Quotient 𝑄 Residue 𝑅  

𝐴 × 𝐵 < 0 −𝑄’ 
−𝑅’ 𝐴 < 0, 𝐵 > 0 

𝑅’ 𝐴 > 0, 𝐵 < 0 

𝐴 × 𝐵 ≥ 0, 𝐵 ≠ 0 𝑄’ 
𝑅’ 𝐴 ≥ 0, 𝐵 > 0 

−𝑅’ 𝐴 < 0, 𝐵 < 0 

 
 Important: To apply 𝑄 = −𝑄′ =  2𝐶(𝑄’), 𝑄’ must be in 2C representation. The same applies to 𝑅 = −𝑅′ =  2𝐶(𝑅′). So, if 𝑄’ =

1101 = 13, we first turn this unsigned number into a signed number  𝑄’ = 01101. Then 𝑄 = 2𝐶(01101) = 10011 = −13.  

 

 Example: 
011011

0101
=

27

5
 

 Convert both numerator and denominator into unsigned numbers: 
11011

101
 

 
|𝐴|

|𝐵|
  𝑄′ = 101, 𝑅′ = 10. Note that these are unsigned numbers. 

 Get 𝑄 and 𝑅: 𝐴 ≤ 0, 𝐵 > 0  𝑄 = 𝑄′ = 0101 = 5, 𝑅 = 𝑅′ = 010 = 2. 
Note that 𝑄 and 𝑅 are signed numbers. 

 
 Verification: 27 = 5 × 5 + 2. 

 

 Example: 
0101110

1011
=

46

−5
 

 Turn the denominator into a positive number  
0101110

0101
 

 Convert both numerator and denominator into unsigned numbers: 
101110

101
=

|𝐴|

|𝐵|
 

 
|𝐴|

|𝐵|
  𝑄′ = 1001, 𝑅′ = 001. Note that these are unsigned numbers. 

 Get 𝑄 and 𝑅: 𝐴 > 0, 𝐵 < 0  𝑄 = 2𝐶(𝑄′) = 2𝐶(01001) = 10111 = −9, 𝑅 = 𝑅′ = 001 = 1. 

 Verification: 46 = −5 × −9 + 1. 

 

 Example: 
10110110

01101
=

−74

13
 

 Turn the numerator into a positive number  
01001010

01101
 

 Convert both numerator and denominator into unsigned numbers: 
1001010

1101
 

 
|𝐴|

|𝐵|
  𝑄′ = 101, 𝑅′ = 1001. Note that these are unsigned numbers. 

 Get 𝑄 and 𝑅: 𝐴 < 0, 𝐵 > 0  𝑄 = 2𝐶(0101) = 1011 = −5, 𝑅 = 2𝐶(𝑅′) = 2𝐶(01001) = 10111 = −9. 

 
 Verification: −74 = 13 × −5 + (−9). 

 

 Example: 
10011011

1001
=

−101

−7
 

 Turn the numerator and denominator into positive numbers  
01100101

0111
 

 Convert both numerator and denominator into unsigned numbers: 
1100101

111
 

 
|𝐴|

|𝐵|
  𝑄′ = 1110, 𝑅′ = 11. These are unsigned numbers. 

 Get 𝑄 and 𝑅: 𝐴 < 0, 𝐵 < 0  𝑄 = 𝑄′ = 01110 = 14, 𝑅 = 2𝐶(𝑅′) = 2𝐶(011) = 101 = −3. 

 
 Verification: −101 = −7 × 14 + (−3). 

 

 
  

001001

101110

101

0110

101

1

101

0000101

1001010

1101

10110

1101

1001

1101

0001110

1100101

111

1011

111

1000

111

11

111

00101

11011

101

111

101

10

101
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BASIC ARITHMETIC UNITS FOR INTEGER NUMBERS 
 Boolean Algebra is a very powerful tool for the implementation of digital circuits. Here, we map Boolean Algebra expressions 

into binary arithmetic expressions for the implementation of binary arithmetic units. Note the operators ‘+’, ‘.’  in Boolean 
Algebra are not the same as addition/subtraction, and multiplication in binary arithmetic. 

 

ADDITION/SUBTRACTION 
 
UNSIGNED NUMBERS 
 1-bit Addition:  

 Addition of a bit with carry in: The circuit that performs this operation is called Half Adder (HA). 
 
 
 
 
 
 
 
 
 
 
 

 Addition of a bit with carry in: The circuit that performs this operation is called Full Adder (FA). 
 
 
 
 
 
 
 
 𝒏-bit Addition:  

The figure on the right shows a 5-bit addition. Using the truth table 
method, we would need 11 inputs and 6 outputs. This is not practical! 
Instead, it is better to build a cascade of Full Adders.  

 
For an n-bit addition, the circuit will be: 
 
 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 
 Overflow 

 

 

 

 
 

x +

y

co s

ci

FA

x

y

ci

s

co

HA
x

y

s

c
FA

x

y

0

s

co

carry out sum

x +

y

c scarry out sum

0 +

0

0 0

0 +

1

0 1

1 +

0

0 1

1 +

1

1 0

x y

0 0

0 1

1 0

1 1

c s

0 0

0 1

0 1

1 0

x

y

c

s

HA
x

y

s

c

15:  0 1 1 1 1 +

10:  0 1 0 1 0

25:  1 1 0 0 1

x4x3x2x1x0 +

y4y3y2y1y0

s4s3s2s1s0

c 5
=

0
c 4

=
1

c 3
=

1
c 2

=
1

c 1
=

0
c 0

=
0

cincout

cn-1
FA

x0 y0

c0

s0

FA

x1 y1

c1

s1

FA

x2 y2

c2

s2

c3
FA

xn-1 yn-1

sn-1

cn ...cout
cin

0 1xi yi ci ci+1 si

0  0  0   0  0

0  0  1   0  1

0  1  0   0  1

0  1  1   1  0

1  0  0   0  1

1  0  1   1  0

1  1  0   1  0

1  1  1   1  1

1 0

ci

xiyi

0

1

00 01

0 1

1 0

11 10 si = xiyici + xiyici + xiyici + xiyici

si = (xiyi)ci + (xiyi)ci

si = xiyici

0 0

0 1

ci

xiyi

0

1

00 01

1 0

1 1

11 10

ci+1 = xiyi + xici + yici

xn-1xn-2...x1x0 +

yn-1yn-2...y1y0

sn-1sn-2...s1s0

cincout

Full Adder Design

cn-1
FA

x0 y0

c0

s0

FA

x1 y1

c1

s1

FA

x2 y2

c2

s2

c3
FA

xn-1 yn-1

sn-1

cn ...

overflow=cout

cin
+ cincout
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 n-bit Subtractor:  
We can build an 𝑛-bit subtractor for unsigned numbers using Full Subtractor circuits. In practice, subtraction is better 

performed in the 2’s complement representation (this accounts for signed numbers). 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SIGNED NUMBERS 
 The figure depicts an 𝑛-bit adder for 2’s complement numbers: 

 
 
 
 
 
 
 
 Subtraction: 𝐴 − 𝐵 = 𝐴 + 2𝐶(𝐵). In 2C arithmetic, subtraction is actually an addition of two numbers.  

The digital circuit for 2C subtraction is based on the adder. We account for the 2’s complement operation for the subtrahend 

by inverting every bit in the subtrahend and by making the cin bit equal to 1. 

 

 

 

 

 

 

 
 Adder/Subtractor Unit for 2's complement numbers: 

We can combine the adder and subtractor in a single circuit if we are willing to give up the input cin. 

 
 
 
 
 
 
 
 
 
 
 
 

  

bn-1
FS

x0 y0

b0

d0

FS

x1 y1

b1

d1

FS

x2 y2

b2

d2

b3
FS

xn-1 yn-1

dn-1

bn ...bout
bin

0 1xi yi bi bi+1 di

0  0  0   0  0

0  0  1   1  1

0  1  0   1  1

0  1  1   1  0

1  0  0   0  1

1  0  1   0  0

1  1  0   0  0

1  1  1   1  1

1 0

bi

xiyi

0

1

00 01

0 1

1 0

11 10
di = xiyibi + xiyibi + xiyibi + xiyibi

di = (xiyi)bi + (xiyi)bi

di = xiyibi

0 1

1 1

bi

xiyi

0

1

00 01

0 0

1 0

11 10

bi+1 = xiyi + xibi + yibi

xn-1xn-2...x1x0 -

yn-1yn-2...y1y0

dn-1dn-2...d1d0

binbout

Full Subtractor Design

cn-1
FA

x0 y0

c0

s0

FA

x1 y1

c1

s1

FA

x2 y2

c2

s2

c3
FA

xn-1 yn-1

sn-1

cn ...
cin

overflow

cout

cn-1
FA

x0 y0

c0

s0

FA

x1 y1

c1

s1

FA

x2 y2

c2

s2

c3
FA

xn-1 yn-1

sn-1

cn ...
cin = 1

overflow

cout

...

 + cin=1cout
overflow

add/sub  yi

0     0

0     1

1     0

1     1

f

0

1

1

0

add/sub

yi

f

cn-1
FA

c0

s0

FA
c1

s1

FA
c2

s2

c3
FA

xn-1 yn-1

sn-1

cn ...
overflow

cout

...

x2 y2 x1 y1 x0 y0
add/sub

add = 0
sub = 1

+/- +/- add/sub

Adder/Subtractor:

cout
overflow
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MULTIPLICATION  

 
UNSIGNED NUMBERS 
 The figure shows the process for multiplying two unsigned numbers of 4 bits. 
 A straightforward implementation of the multiplication operation is also depicted in the figure below: at every diagonal of 

the circuit, we add up all terms in a column of the multiplication.  
 
  

b(3)

p(0)

p(1)

p(2)

p(3)

p(4)p(5)p(6)p(7)

b(2) b(1) b(0)

a(0)

a(1)

a(2)

a(3)

x y
cin

cout

s

a3    a2    a1    a0 x

b3    b2    b1    b0

a3b0 a2b0 a1b0 a0b0
a3b1 a2b1 a1b1 a0b1

a3b2 a2b2 a1b2 a0b2
a3b3 a2b3 a1b3 a0b3

p7    p6    p5   p4    p3    p2    p1    p0

a1b0

a0b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3

FULL

ADDER

m10m11m12m13

m00m01m02m03

m20m21m22m23

m30m31m32m33

s10s11s12

s20s21s22

s30s31s32

c02 c01 c00

c12 c11 c10

c22 c21 c20

c32 c31 c30

s13

s23

s33

s00s01s02s03

m40m41m42m43
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 An alternative implementation of the multiplication operation is depicted below for 4-bit unsigned numbers. It is much simpler 
to see how only two rows are added up at each stage. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SIGNED NUMBERS (2C) 
 This signed multiplier uses an unsigned multiplier, three adder subtractors (with one constant input), and a logic gate. 

 The initial adder/subtractor units provide the absolute values of 𝐴 and 𝐵. 

 The largest unsigned product is given by 2𝑛+𝑚−2 (𝑛 + 𝑚 − 1 bits suffice to represent this number), so the (𝑛 + 𝑚)-bit 
unsigned product has its MSB=0. Thus, we can use this (𝑛 + 𝑚)-bit unsigned number as a positive signed number. The 

final adder/subtractor might change the sign of the positive product based on the signs of A and B. 

 Absolute Value: For an 𝑛-bit signed number 𝑋, the absolute value is defined as: |𝑋| = {
0 + 𝑋, 𝑋 ≥ 0
0 − 𝑋, 𝑋 < 0

   

 Thus, the absolute value |𝑋| can have at most 𝑛 + 1 bits. To avoid overflow, we sign-extend the inputs to 𝑛 + 1 bits. The 

result |𝑋| has 𝑛 + 1 bits. Since |𝑋| is an absolute value, then |𝑋|𝑁 = 0. Thus, we can get |𝑋| as an unsigned number by 

discarding the MSB, i.e., using only 𝑛 bits: |𝑋|𝑛−1 downto |𝑋|0. 
 Alternatively, we can omit the sign-extension (since we are discarding |𝑋|𝑛 anyway), and we will get |𝑋| as an unsigned 

number. If we need |𝑋| as a signed number (for further computations), we append a ‘0’ to the unsigned number. 

 

  

b0

b1

a0a1a2a3

FA
PUPUPUPU

PUPUPUPU

0

b2

PUPUPUPU
b3

p0p1p2p3p4p5p6p7

bi

aj

cincout

PU

x +

+

+

0

0

0

+/- +/-

0

+/- +/-

0

ARRAY 
MULTIPLIER

+/- +/-

0
+/- +/-

0
Xn-1

signed

unsigned

,

+/- +/-

0

Xn-1

unsigned



Absolute Value Circuit

unsigned unsigned

signedsigned

unsigned

signed

signed
signed
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a3

b3

a2

b2

a1

b1

a0

b0

A=B

a3

b3

a2

b2

e3

e2

e1

e0

e3

a1

b1

e3

e2

a0

b0

e3

e2

e1

A>B

A<B

AB

AB

A=B

A<B

A>B

COMPARATOR

A

B

4

4

COMPARATORS 
 
UNSIGNED NUMBERS 
 For 𝐴 = 𝑎3𝑎2𝑎1𝑎0, 𝐵 = 𝑏3𝑏2𝑏1𝑏0 

 
 𝐴 > 𝐵 when: 

𝑎3 = 1, 𝑏3 = 0 

Or: 𝑎3 = 𝑏3 and 𝑎2 = 1, 𝑏2 = 0 

Or: 𝑎3 = 𝑏3, 𝑎2 = 𝑏2 and 𝑎1 = 1, 𝑏1 = 0 
Or: 𝑎3 = 𝑏3, 𝑎2 = 𝑏2, 𝑎1 = 𝑏1 and 𝑎0 = 1, 𝑏0 = 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SIGNED NUMBERS 
 First Approach: 

 If 𝐴 ≥ 0 and 𝐵 ≥ 0, we can use the unsigned comparator. 

 If 𝐴 < 0 and 𝐵 < 0, we can also use the unsigned comparator. 
Example: 10002 < 10012 (-8 < -7). The closer the number is 

to zero, the larger the unsigned value is. 
 If one number is positive and the other negative: 

Example: 10002 < 01002 (-8 < 4). If we were to use the 

unsigned comparator, we would get 10002 > 01002. So, in this 

case, we need to invert both the A>B and the A<B bit. 

 
 Example: For a 4-bit number in 2’s complement: 

 If 𝑎3 = 𝑏3, 𝐴 and 𝐵 have the same sign. Then, we do not need to invert any bit. 

 If 𝑎3 ≠ 𝑏3, 𝐴 and 𝐵 have a different sign. Then, we need to invert the A>B and A<B bits of the unsigned comparator. 

 
𝑒3 = 1 when 𝑎3 = 𝑏3.  𝑒3 = 0 when 𝑎3 ≠ 𝑏3. 

Then it follows that: (𝐴 < 𝐵)𝑠𝑖𝑔𝑛𝑒𝑑 = 𝑒3̅(𝐴 < 𝐵)𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑 =  𝑒3(𝐴 < 𝐵)𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

(𝐴 > 𝐵)𝑠𝑖𝑔𝑛𝑒𝑑 =  𝑒3(𝐴 > 𝐵)𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

 
 

 Second Approach: 
 Here, we use an adder/subtractor in 2C arithmetic. We need 

to sign-extend the inputs to consider the worst-case scenario 
and then subtract them. 

 We can determine whether 𝐴 is greater than 𝐵, based on: 

𝑅𝑛 = {
1 → 𝐴 − 𝐵 < 0
0 → 𝐴 − 𝐵 ≥ 0

 

 To determine whether 𝐴 = 𝐵, we compare the 𝑛 + 1 bits of 𝑅 

to 0 (𝑅 = 𝐴 − 𝐵). However, note that (𝐴 − 𝐵) ∈ [−2𝑛 + 1, 2𝑛 −
2]. So, the case 𝑅 = −2𝑛 = 10 … 0 will not occur. Thus, we only 

need to compare the bits 𝑅𝑛−1 to 𝑅0 to 0. 

A=B

A<B

A>B

UNSIGNED

COMPARATOR

A

B

4

4

e3

A=B

A<B

A>B

+/- +/- 1

...

...
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ARITHMETIC LOGIC UNIT (ALU) 
 Two types of operation: Arithmetic and Logic (bit-wise). The sel(3..0) input selects the operation. sel(2..0) selects 

the operation type within a specific unit. The arithmetic unit consist of adders and subtractors, while the Logic Unit consist 
of 8-input logic gates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BARREL SHIFTER 

 Two types of operation: Arithmetic (mode=0, it implements 2𝑖) and Rotation  (mode=1) 

 Truth table for a 8-bit Barrel Shifter:  

result[7..0] (output): It is shifted version of the input data[7..0]. sel[2..0]: number of bits to shift. 

dir: It controls the shifting direction (dir=1: to the right, dir=0: to the left). When shifting to the right in the Arithmetic 

Mode, we use sign extension so as properly account for both unsigned and signed input numbers. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Function

Transfer 'a'

Increment 'a'

Decrement 'a'

Transfer 'b'

Increment 'b'

Decrement 'b'

Add 'a' and 'b'

Subtract 'b' from 'a'

Complement 'a'

Complement 'b'

AND

OR

NAND

NOR

XOR

XNOR

ARITHMETIC 

UNIT

LOGIC UNIT

a

b

sel

y

sel(3)

8

8

4

8

0

1

sel

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0 

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Operation

y <= a

y <= a + 1

y <= a - 1

y <= b

y <= b + 1

y <= b - 1

y <= a + b

y <= a - b

y <= NOT a

y <= NOT b

y <= a AND b

y <= a OR b

y <= a NAND b

y <= a NOR b

y <= a XOR b

y <= a XNOR b

Unit

A
R
I
T
H
M
E
T
I
C

L
O
G
I
C

0                  1

0                                     1

result[7..0]

abcdefgh

bcdefgh0

cdefgh00

defgh000

efgh0000

fgh00000

gh000000

h0000000

aabcdefg

aaabcdef

aaaabcde

aaaaabcd

aaaaaabc

aaaaaaab

aaaaaaaa

dist[2..0]

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

data[7..0]

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

dir

X

0

0

0

0

0

0

0

1

1

1

1

1

1

1

mode = 0. ARITHMETIC MODE

result[7..0]

abcdefgh

bcdefgha

cdefghab

defghabc

efghabcd

fghabcde

ghabcdef

habcdefg

habcdefg

ghabcdef

fghabcde

efghabcd

defghabc

cdefghab

bcdefgha

dist[2..0]

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

data[7..0]

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

dir

X

0

0

0

0

0

0

0

1

1

1

1

1

1

1

mode = 1. ROTATION MODE

data

shifter to

left

0 1 2 3 4 5 6 7

dist
3

shifter to

right

0 1 2 3 4 5 6 7

rotate to

left

0 1 2 3 4 5 6 7

rotate to

right

0 1 2 3 4 5 6 7

dir
0                  1

mode

8

result

8
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FIXED-POINT (FX) ARITHMETIC 

 

INTRODUCTION 

 
FX FOR UNSIGNED NUMBERS 
 We know how to represent positive integer numbers. But what if we wanted to represent numbers with fractional parts? 
 Fixed-point arithmetic: Binary representation of positive decimal numbers with fractional parts. 
 

FX number (in binary representation):   (𝑏𝑛−1𝑏𝑛−2 … 𝑏1𝑏0. 𝒃−𝟏𝒃−𝟐 … 𝒃−𝒌)2 

 
 Conversion from binary to decimal: 

𝐷 = ∑ 𝑏𝑖 × 2𝑖

𝑛−1

𝑖=−𝑘

= 𝑏𝑛−1 × 2𝑛−1 + 𝑏𝑛−2 × 2𝑛−2 + ⋯ + 𝑏1 × 21 + 𝑏0 × 20 + 𝒃−𝟏 × 𝟐−𝟏 + 𝒃−𝟐 × 𝟐−𝟐 + ⋯ 𝒃−𝒌 × 𝟐−𝒌 

 
Example: 1011.1012 = 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 + 1 × 𝟐−𝟏 + 𝟎 × 𝟐−𝟐 + 𝟏 × 𝟐−𝟑 = 11.625 

 
To convert from binary to hexadecimal: 

 
 
 
 
 
 Conversion from decimal to binary: We divide the number into its integer and fractional parts. We get the binary 

representation of the integer part using the successive divisions by 2. For the fractional part, we apply successive 
multiplications by 2 (see example below). We then combine the integer and fractional binary results. 
 Example: Convert 31.625 to FX (in binary): We know 31 = 111112. In the figure below, we have that 0.625 = 0.1012. 

Thus: 31.625 =  11111.1012. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FX FOR SIGNED NUMBERS 
 Method: Get the FX representation of +379.21875, and then apply the 2’s complement operation to that result. 

 Example: Convert -379.21875 to the 2’s complement representation. 
 379 = 1011110112. 0.21875 = 0.001112. Then: +379.21875 (2C) = 0101111011.001112.  

 We get -379.2185 by applying the 2C operation to +379.21875  -379.21875 = 1010000100.110012 = 0xE84.C8. 

To convert to hexadecimal, we append zeros to the LSB and sign-extend the MSB. Note that the 2C operation involves 
inverting the bits and add 1; the addition by ‘1’ applies to the LSB, not to the rightmost integer. 

Binary: 10101.101012 0001 0101.1010 1000

1 5hexadecimal: A. 8

0.625

Number in

base 10

Number in

base 2

????2

0.625x2 = 1.25 =  1 + 0.25

0.25x2 = 0.5  =  0 + 0.5

0.5x2 = 1    =  1 + 0

stop here!
0.1012

MSB

0.7

Number in

base 10

Number in

base 2

????2

0.7x2 = 1.4 =  1 + 0.4

0.4x2 = 0.8 =  0 + 0.8

0.8x2 = 1.6 =  1 + 0.6

0.6x2 = 1.2 =  1 + 0.2

0.4x2 = 0.8 =  0 + 0.8

0.2x2 = 0.4 =  0 + 0.4

0.10110 0110 ...2

MSB
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INTEGER REPRESENTATION 
 𝑛 − 𝑏𝑖𝑡 number: 𝑏𝑛−1𝑏𝑛−2 … 𝑏0 

 

 UNSIGNED SIGNED 

Decimal 
Value 

𝐷 = ∑ 𝑏𝑖2𝑖

𝑛−1

𝑖=0

 𝐷 = −2𝑛−1𝑏𝑛−1 + ∑ 𝑏𝑖2𝑖

𝑛−2

𝑖=0

 

Range of 
values 

[0, 2𝑛 − 1] [−2𝑛−1, 2𝑛−1 − 1] 

 

FIXED POINT REPRESENTATION 
 Typical representation [𝑛  𝑝]: 𝑛 − 𝑏𝑖𝑡 number with 𝑝 fractional bits: 𝑏𝑛−𝑝−1𝑏𝑛−𝑝−2 … 𝑏0. 𝑏−1𝑏−2 … 𝑏−𝑝 

 
 
 
 

 UNSIGNED SIGNED 

Decimal 
Value 

𝐷 = ∑ 𝑏𝑖2𝑖

𝑛−𝑝−1

𝑖=−𝑝

 𝐷 = −2𝑛−𝑝−1𝑏𝑛−𝑝−1 + ∑ 𝑏𝑖2𝑖

𝑛−𝑝−2

𝑖=−𝑝

 

Range of 
values 

[
0

2𝑝
,
2𝑛 − 1

2𝑝
] = [0, 2𝑛−𝑝 − 2−𝑝] [

−2𝑛−1

2𝑝
,
2𝑛−1 − 1

2𝑝
] = [−2𝑛−𝑝−1, 2𝑛−𝑝−1 − 2−𝑝] 

Dynamic 
Range 

|2𝑛−𝑝 − 2−𝑝|

|2−𝑝|
= 2𝑛 − 1 

(𝑑𝐵) = 20 × log10(2𝑛 − 1) 

|−2𝑛−𝑝−1|

|2−𝑝|
= 2𝑛−1 

(𝑑𝐵) = 20 × log10(2𝑛−1) 

Resolution 
(1 LSB) 

2−𝑝 2−𝑝 

 
 Dynamic Range: 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑅𝑎𝑛𝑔𝑒 =
𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑎𝑏𝑠. 𝑣𝑎𝑙𝑢𝑒

𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑛𝑜𝑛𝑧𝑒𝑟𝑜 𝑎𝑏𝑠. 𝑣𝑎𝑙𝑢𝑒
 

 
𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑅𝑎𝑛𝑔𝑒(𝑑𝐵) = 20 × log10(𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑅𝑎𝑛𝑔𝑒) 

 
 Unsigned numbers: Range of Values 
 
 
 
 
 
 
 Signed numbers: Range of Values 
 
 
 
 
 
 
 Examples: 

 FX Format Range Dynamic Range (dB) Resolution 

UNSIGNED 

[8 7] [0, 1.9922] 48.13 0.0078 

[12 8] [0, 15.9961] 72.24 0.0039 

[16 10] [0, 63.9990] 96.33 0.0010 

SIGNED 

[8 7] [-1, 0.9921875] 42.14 0.0078 

[12 8] [-8, 7.99609375] 66.23 0.0039 

[16 10] [-64, 63.9990234375] 90.31 0.0010 

 
  

n-p p

n

... ...

... ...
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FIXED-POINT ADDITION/SUBTRACTION 
 Addition of two numbers represented in the format [𝑛  𝑝]:  

 
𝐴 × 2−𝑝 ± 𝐵 × 2−𝑝 = (𝐴 ± 𝐵) × 2−𝑝  

We perform integer addition/subtraction of 𝐴 and 𝐵. We just need to interpret the result 

differently by placing the fractional point where it belongs. Notice that the hardware is 
the same as that of integer addition/subtraction. 
 
When adding/subtracting numbers with different formats [𝑛  𝑝] and [𝑚  𝑘], we first need to align the fractional point so that 

we use a format for both numbers: it could be [𝑛  𝑝], [𝑚  𝑘], [𝑛 − 𝑝 + 𝑘  𝑘], [𝑚 − 𝑘 + 𝑝  𝑝]. This is done by zero-padding and 

sign-extending where necessary. In the figure below, the format selected for both numbers is [𝑚  𝑘], while the result is in 
the format [𝑚 + 1  𝑘]. 
 
 
 
 
 
 
 
Important: The result of the addition/subtraction requires an extra bit in the 
worst-case scenario. In order to correctly compute it in fixed-point 
arithmetic, we need to sign-extend (by one bit) the operators prior to 
addition/subtraction. 
 
 
 
Multi-operand Addition: 𝑁 numbers of format [𝑛  𝑝]: The total number of bits is given by : 𝑛 + ⌈log2 𝑁⌉ (this can be 
demonstrated by an adder tree). Notice that the number of fractional bits does not change (it remains 𝑝), only the integer 

bits increase by ⌈log2 𝑁⌉, i.e., the number of integer bits become 𝑛 − 𝑝 + ⌈log2 𝑁⌉. 
 
 

 Examples: Calculate the result of the additions and subtractions for the following fixed-point numbers. 
 

UNSIGNED SIGNED 

       0.101010 + 

      1.0110101          

        1.00101 - 

      0.0000111 

        10.001 + 

      1.001101          

        0.0101 - 

     1.0101101          

        10.1101 + 

         1.1001 

          100.1 + 

      0.1000101 

     1000.0101 - 

     111.01001          

      101.0001 + 

     1.0111101          

 
Unsigned: 
 
 
 
 
 
 
 
Signed: 
 
 

 
 
 
 
 
 
 
 
  

n-p p

m-k k

m-k+1 k

+

n-p p

m-k k

n-p p

m-k k

m-k+1 k

+

n-p p

n-p p

n-p+1 p

+

0.1 0 1 0 1 0 0 +

1.0 1 1 0 1 0 1

1 0.0 0 0 1 0 0 1

c 8
=1

c 7
=1

c 6
=1

c 5
=1

c 4
=0

c 3
=1

c 2
=0

c 1
=0

c 0
=0

1.0 0 1 0 1 0 0 -

0.0 0 0 0 1 1 1

1.0 0 0 1 1 0 1

b
7=

0
b

6=
0

b
5=

0
b

4=
1

b
3=

1
b

2=
1

b
1=

1
b

0=
0

1 0.1 1 0 1 +

1.1 0 0 1

1 0 0.0 1 1 0

c 6
=1

c 5
=1

c 4
=1

c 3
=0

c 2
=0

c 1
=1

c 0
=0

1 0 0.1 0 0 0 0 0 0 +

0.1 0 0 0 1 0 1

1 0 1.0 0 0 0 1 0 1

c 1
0=

0
c 9

=0
c 8

=0
c 7

=1
c 6

=0
c 5

=0
c 4

=0
c 3

=0
c 2

=0
c 1

=0
c 0

=0

1 1 0.0 0 1 0 0 0 +

1 1 1.0 0 1 1 0 1

1 0 1.0 1 0 1 0 1

c 9
=1

c 8
=1

c 7
=0

c 6
=0

c 5
=0

c 4
=1

c 3
=0

c 2
=0

c 1
=0

c 0
=0

0.0 1 0 1 0 0 0 -

1.0 1 0 1 1 0 1

c 8
=0

c 7
=0

c 6
=0

c 5
=0

c 4
=0

c 3
=0

c 2
=0

c 1
=0

c 0
=0

0.0 1 0 1 0 0 0 +

0.1 0 1 0 0 1 1

0.1 1 1 1 0 1 1

1 0 0 0.0 1 0 1 0 -

1 1 1 1.0 1 0 0 1

c 9
=0

c 8
=0

c 7
=0

c 6
=0

c 5
=1

c 4
=1

c 3
=1

c 2
=1

c 1
=0

c 0
=0

1 0 0 0.0 1 0 1 0 +

0 0 0 0.1 0 1 1 1

1 0 0 1.0 0 0 0 1

1 0 1.0 0 0 1 0 0 0 +

1 1 1.0 1 1 1 1 0 1

1 0 0.1 0 0 0 1 0 1

c 1
0
=1

c 9
=1

c 8
=1

c 7
=0

c 6
=1

c 5
=1

c 4
=1

c 3
=0

c 2
=0

c 1
=0

c 0
=0
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FIXED-POINT MULTIPLICATION 
 

 Unsigned multiplication 
Multiplication of two signed numbers represented with different formats [𝑛  𝑝], [𝑚 𝑘]: 
 
 
 
 
 
(𝐴 × 2−𝑝) × (𝐵 × 2−𝑘) = (𝐴 × 𝐵) × 2−𝑝−𝑘. We can perform integer multiplication of A and B and then place the fractional 

point where it belongs. The format of the multiplication result is given by [𝑛 + 𝑚  𝑝 + 𝑘]. There is no need to align the 

fractional point of the input quantities. 
 
Special case: 𝑚 = 𝑛, 𝑘 = 𝑝 
(𝐴 × 2−𝑝) × (𝐵 × 2−𝑝) = (𝐴 × 𝐵) × 2−2𝑝. Here, the format of the 

multiplication result is given by [2𝑛  2𝑝]. 
 
 Multiplication procedure for unsigned integer numbers: 

 
 
 
 
 

Example: when multiplying, we treat the numbers as integers. Only 
when we get the result, we place the fractional point where it belongs.  

 
 
 
 
 
 
 
 

 
 
 Signed Multiplication: We first take the absolute value of the operands. Then, if at least one of the operands was negative, 

we need to change the sign of the result. We then place the fractional point where it belongs. 
 
Examples: 
 
 
 
 
 
 
 

  

n-p p

m-k k

x

n+m-p-k p+k

a3    a2    a1    a0 x

b3    b2    b1    b0

a3b0 a2b0 a1b0 a0b0
a3b1 a2b1 a1b1 a0b1

a3b2 a2b2 a1b2 a0b2
a3b3 a2b3 a1b3 a0b3

p7    p6    p5   p4    p3    p2    p1    p0

1 0 1 1 x

1 1 0 1  

1 0 1 1  

0 0 0 0    

1 0 1 1      

1 0 1 1        

1 0 0 0 1 1 1 1  

2.75 = 10.11 x

6.5 = 110.1  

17.875 = 1 0 0 0 1.1 1 1  

1 1 0 1 0 1 x

1 0 1  

1 1 0 1 0 1  

0 0 0 0 0 0     

1 1 0 1 0 1       

1 0 0 0 0 1 0 0 1  

01.001 x

1.001001

1 1 0 1 1 1 x

1 0 0 1  

1 1 0 1 1 1  

0 0 0 0 0 0    

0 0 0 0 0 0      

1 1 0 1 1 1        

1 1 1 1 0 1 1 1 1  

01.001 x

0.110111  

0.1 1 1 1 0 1 1 1 1

1.0 0 0 0 1 0 0 0 1

10.0001 x

01.01001  

1 0 1 0 0 1 x

1 1 1 1 1  

1 0 1 0 0 1  

1 0 1 0 0 1    

1 0 1 0 0 1      

1 0 1 0 0 1        

1 0 1 0 0 1         

1 0 0 1 1 1 1 0 1 1 1  

01.1111 x

01.01001  

0 1 0.0 1 1 1 1 0 1 1 1 

1 0 1.1 0 0 0 0 1 0 0 1

1000.000 x

10.010101

01000.000 x

01.101011  

1 1 0 1 0 1 1 x

1 0 0 0 0 0 0  

0 0 0 0 0 0 0  

1 1 0 1 0 1 1      

1 1 0 1 0 1 1 0 0 0 0 0 0  

0 1 1 0 1.0 1 1 0 0 0 0 0 0 

0.1101010 x

11.1111011

0.110101 x

0.0000101  

0.0 0 0 0 1 0 0 0 0 1 0 0 1

1.1 1 1 1 0 1 1 1 1 0 1 1 1
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FIXED-POINT DIVISION 
 
 Unsigned Division: 𝐴𝑓 𝐵𝑓⁄  

We first need to align the numbers so they have the same number of fractional bits, then divide them treating them as 
integers. The quotient will be integer, while the remainder will have the same number of fractional bits as 𝐴𝑓. 

 
𝐴𝑓 is in the format [𝑛𝑎 𝑎]. 𝐵𝑓 is in the format [𝑛𝑏 𝑏] 

 
Step 1: For 𝑎 ≥ 𝑏, we align the fractional points and then get the integer numbers 𝐴 and 𝐵, which result from: 

𝐴 = 𝐴𝑓 × 2𝑎 𝐵 = 𝐵𝑓 × 2𝑎 

Step 2: Integer division: 
𝐴

𝐵
=

𝐴𝑓

𝐵𝑓
 

The numbers 𝐴 and 𝐵 are related by the formula: 𝐴 = 𝐵 × 𝑄 + 𝑅, where 𝑄 and 𝑅 are the quotient and remainder of the 

integer division of 𝐴 and 𝐵. Note that 𝑄 is also the quotient of 
𝐴𝑓

𝐵𝑓
. 

Step 3: To get the correct remainder of 
𝐴𝑓

𝐵𝑓
, we re-write the previous equation: 

𝐴𝑓 × 2𝑎 = (𝐵𝑓 × 2𝑎) × 𝑄 + 𝑅 → 𝐴𝑓 = 𝐵𝑓 × 𝑄 + (𝑅 × 2−𝑎) 

Then: 𝑄𝑓 = 𝑄, 𝑅𝑓 = 𝑅 × 2−𝑎 

 
Example: 

1010.011

11.1
 

Step 1: Alignment, 𝑎 =  3 
1010.011

11.1
=

1010.011

11.100
=

1010011

11100
 

 
Step 2: Integer Division 

1010011

11100
 1010011 = 11100(10) + 11011 →  𝑄 = 10, 𝑅 = 11011 

 
Step 3: Get actual remainder: 𝑅 × 2−𝑎 

𝑅𝑓 = 11.011 

 
Verification: 1010.011 = 11.1(10) + 11,011, 𝑄𝑓 = 10, 𝑅𝑓 = 11011 

 
 
 Adding precision bits to 𝑄𝑓 (quotient of 𝐴𝑓 𝐵𝑓⁄ ): 

The previous procedure only gets 𝑄 as an integer. What if we want to get the division result with 𝑥 number of fractional 

bits? To do so, after alignment, we append 𝑥 zeros to 𝐴𝑓 × 2𝑎 and perform integer division.  

 
𝐴 = 𝐴𝑓 × 2𝑎 × 2𝑥 𝐵 = 𝐵𝑓 × 2𝑎 

𝐴𝑓 × 2𝑎+𝑥 = (𝐵𝑓 × 2𝑎) × 𝑄 + 𝑅 → 𝐴𝑓 = 𝐵𝑓 × (𝑄 × 2−𝑥) + (𝑅 × 2−𝑎−𝑥) 

Then: 𝑄𝑓 = 𝑄 × 2−𝑥, 𝑅𝑓 = 𝑅 × 2−𝑎−𝑥 

 

Example: 
1010,011

11,1
 with 𝑥 = 2 bits of precision 

 
Step 1: Alignment, 𝑎 =  3 

1010.011

11.1
=

1010.011

11.100
=

1010011

11100
 

Step 2: Append 𝑥 = 2 zeros 
1010011

11100
=

1010011𝟎𝟎

11100
 

Step 3: Integer Division 
1010011𝟎𝟎

11100
 1010011𝟎𝟎 = 11100(1011) + 11000 

 𝑄 = 1011, 𝑅 = 11000 

 
Step 4: Get actual remainder and quotient (or result): 𝑄𝑓 = 𝑄 × 2−𝑥, 𝑅𝑓 = 𝑅 × 2−𝑎−𝑥 

𝑄𝑓 = 10.11, 𝑅𝑓 = 0.11000 

 
Verification: 1010.01100 = 11.1(10.11) + 0,11000. 
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 Signed division: In this case (just as in the multiplication), we first take the absolute value of the operators 𝐴 and 𝐵. If 

only one of the operators is negative, the result of abs(A)/abs(B) requires a sign change. 
What about the remainder? You can also correct the sign of 𝑅𝑓 (using the procedure specified in the case of signed integer 

numbers). However, once the quotient is obtained with fractional bits, getting 𝑅𝑓 with the correct sign is not very useful. 

 
 Example: We get the division result (with 𝑥 =  4 fractional bits ) for the following signed fixed-point numbers: 

 

 
101.1001

1.011
: To positive (numerator and denominator), alignment, and then to unsigned: 𝑎 = 4: 

101.1001

1.011
=

010.0111

0.1010
≡

100111

1010
 

 

Append 𝑥 =  4 zeros: 
100111𝟎𝟎𝟎𝟎

1010
 

Unsigned integer Division: 
 

𝑄 = 111110, 𝑅 = 100 
→ 𝑄𝑓 = 11.1110 (𝑥 = 4) 

 

Final result (2C): 
101.1001

1.011
= 011.111 (this is represented as a signed number) 

 
 
 
 
 
 

 

 
11.011

1.01011
: To positive (numerator and denominator), alignment, and then to unsigned, 𝑎 = 5: 

00.101

0.10101
=

0.10100

0.10101
≡

10100

10101
 

 

Append 𝑥 =  4 zeros: 
10100𝟎𝟎𝟎𝟎

10101
 

Unsigned integer Division: 
 

𝑄 = 1111, 𝑅 = 101 
→ 𝑄𝑓 = 0.1111(𝑥 = 4) 

 

Final result (2C): 
11.011

1.01011
= 0.1111 (this is represented as a signed number) 

 
 
 
 

 

 
10.0110

01.01
: To positive (numerator), alignment, and then to unsigned, 𝑎 = 4: 

01.1010

01.01
=

01.1010

01.0100
≡

11010

10100
 

 

Append 𝑥 =  4 zeros: 
11010𝟎𝟎𝟎𝟎

10100
 

Unsigned integer Division: 
 

𝑄 = 10100, 𝑅 = 10000 

→ 𝑄𝑓 = 1.0100(𝑥 = 4)  𝑄𝑓 here is represented as an unsigned number 

 

Final result (2C): 
10.0110

01.01
= 2𝐶(01.01) = 10.11 

 

 
0.101010

110.1001
: To positive (denominator), alignment, and then to unsigned, 𝑎 = 5: 

0.10101

001.0111
=

0.10101

001.01110
≡

10101

101110
 

 

Append 𝑥 =  4 zeros: 
10101𝟎𝟎𝟎𝟎

101110
 

Unsigned integer Division: 
 

𝑄 = 111, 𝑅 = 1110 
→ 𝑄𝑓 = 0.0111(𝑥 = 4) 

 

Final result (2C): 
0.101010

110.1001
= 2𝐶(0.0111) = 1.1001 

 
 

0000111110

1001110000

1010

10011

1010

10010

1010

10000

1010

1100

1010

100

1010

000001111

101000000

10101

100110

10101

100010

10101

11010

10101

101

10101

000010100

110100000

10100

11000

10100

10000

10100

000000111

101010000

101110

1001100

101110

111100

101110

1110

101110
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ARITHMETIC FX UNITS. TRUNCATION/ROUNDING/SATURATION 

 
ARITHMETIC FX UNITS 
 They are the same as those that operate on integer numbers. The main difference is that we need to know where to place 

the fractional point. The design must keep track of the FX format at every point in the architecture. 
 One benefit of FX representation is that we can perform truncation, rounding and saturation on the output results and the 

input values. These operations might require the use of some hardware resources. 
 
TRUNCATION  
 This is a useful operation when less hardware is required in subsequent operations. However 

this comes at the expense of less accuracy.  
 To assess the effect of truncation, use PSNR (dB) or MSE with respect to a double floating 

point result or with respect to the original [𝑛  𝑝] format. 

 Truncation is usually meant to be truncation of the fractional part.  However, we can also 
truncate the integer part (chop off 𝑘 MSBs). This is not recommended as it might render the number unusable. 

 
ROUNDING 
 This operation allows for hardware savings in subsequent 

operations at the expense of reduced accuracy. But it is 
more accurate than simple truncation. However, it requires 
extra hardware to deal with the rounding operation. 

 For the number 𝑏𝑛−𝑝−1𝑏𝑛−𝑝−2 … 𝑏0. 𝑏−1𝑏−2 … 𝑏−𝑝, if we want 

to chop 𝑘 bits (LSB portion), we use the 𝑏𝑘−𝑝−1 bit to 

determine whether to round. If the 𝑏𝑘−𝑝−1 = 0, we just 

truncate. If 𝑏𝑘−𝑝−1 = 1, we need to add ‘1’ to the LSB of 

the truncated result. 
 
SATURATION  
 This is helpful when we need to restrict the number of integer bits. Here, we are asked to 

reduce the number of integer bits by 𝑘. Simple truncation chops off the integer part by 𝑘 

bits; this might completely modify the number and render it totally unusable. Instead, in 
saturation, we apply the following rules: 

 
 If all the 𝑘 + 1 MSBs of the initial number are identical, that means that chopping by 𝑘 

bits does not change the number at all, so we just discard the 𝑘 MSBs. 

 If the 𝑘 + 1 MSBs are not identical, chopping by 𝑘 bits does change the number. Thus, here, if the MSB of the initial 

number is 1, the resulting (𝑛 − 𝑘)-bit number will be −2𝑛−𝑘−𝑝−1 = 10 … 0 (largest negative number). If the MSB is 0, the 
resulting (𝑛 − 𝑘)-bit number will be 2𝑛−𝑘−𝑝−1 − 2−𝑝 = 011 …1 (largest positive number).  

 
Examples: Represent the following signed FX numbers in the signed fixed-point format: [8 7]. You can use rounding or 

truncation for the fractional part. For the integer part, use saturation. 
 
 1,01101111: 

To represent this number in the format [8 7], we keep the integer bit, and we can only truncate or round the last LSB: 

After truncation: 1,0110111  

After rounding: 1,0110111 + 1 = 1,0111000 

 
 11,111010011: 

Here, we need to get rid of on MSB and two LSBs. Let’s use rounding (to the next bit). 
Saturation in this case amounts to truncation of the MSB, as the number won’t change if we remove the MSB. 
After rounding: 11,1110100 + 1 = 11,1110101 
After saturation: 1,1110101 

 
 101,111010011: 

Here, we need to get rid of two MSB and two LSBs.  
Saturation: Since the three MSBs are not the same and the MSB=1 we need to replace the number by the largest negative 
number (in absolute terms) in the format [8 7]: 1,0000000 

 
 011,1111011011: 

Here, we need to get rid of two MSB and three LSBs.  
Saturation: Since the three MSBs are not identical and the MSB=0, we need to replace the number by the largest positive 
number in the format [8 7]: 0,1111111 

n-p p

n-p p-k

k

n-p p

n-p p-k

k

0 n-p p

n-p p-k

k

1

1

+

n-p+1 p-k

n-p

k

n-p-k p

p

n-k
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FLOATING POINT REPRESENTATION 
 There are many ways to represent floating numbers. A common way is: 
 

𝑋 = ±𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 × 2𝑒 

 
 
 
 Exponent 𝑒: Signed integer. It is common to encode this field using a bias: 𝑒 + 𝑏𝑖𝑎𝑠. This facilitates zero detection (𝑒 +

𝑏𝑖𝑎𝑠 = 0). Note that the exponent of the actual number is always 𝑒 regardless of the bias (the bias is just for encoding). 
𝑒 ∈ [−2𝐸−1, 2𝐸−1 − 1 ] 

 
 Significand: Unsigned fixed point number. Usually normalized to a particular range, e.g.: [0, 1), [1,2). 

Format (unsigned): [𝑚  𝑝]. Range: [0,
2𝑚−1

2𝑝 ] = [0, 2𝑚−𝑝 − 2−𝑝], 𝑘 =  𝑚 − 𝑝 

If 𝑘 = 0  Significand ∈ [0,1 − 2−𝑝] = [0,1) 
If 𝑘 = 𝑚  Significand ∈ [0, 2𝑚 − 1]. Integer significand. 

 
Another common representation of the significand is using 𝑘 = 1 and setting that bit (the MSB) to 1. Here, the range of the 

significand would be [0, 21 − 2−𝑝], but since the integer bit is 1, the values start from 1, which result in the following 

significand range: [1, 21 − 2−𝑝]. This is a popular normalization, as it allows us to drop the MSB in the encoding. 

 
IEEE-754 STANDARD 
 The representation is as follows: 
 

𝑋 = ±1. 𝑓 × 2𝑒 

 
 
 Significand: Unsigned FX integer. The representation is normalized to 𝑠 = 1. 𝑓, where 𝑓 is the mantissa. There is always 

an integer bit 1 (called hidden 1) in the representation of the significand, so we do not need to indicate in the encoding. 
Thus, we only use 𝑓 the mantissa in the significant field. 

Significand range: [1,2 − 2−𝑝] = [1,2) 
 
 Biased exponent: Unsigned integer with 𝐸 bits. 𝑏𝑖𝑎𝑠 = 2𝐸−1 − 1. Thus, 𝑒𝑥𝑝 = 𝑒 + 𝑏𝑖𝑎𝑠 → 𝑒 = 𝑒𝑥𝑝 − 𝑏𝑖𝑎𝑠. We just subtract 

the 𝑏𝑖𝑎𝑠 from the exponent field in order to get the exponent value 𝑒. 

 𝑒𝑥𝑝 = 𝑒 + 𝑏𝑖𝑎𝑠 ∈ [0, 2𝐸 − 1 ]. 𝑒𝑥𝑝 is represented as un unsigned integer number with 𝐸 bits. The bias makes sure that 
𝑒𝑥𝑝 ≥ 0. Also note that 𝑒 ∈ [−2𝐸−1 + 1, 2𝐸−1 ]. 

 The IEEE-754 standard reserves the following cases: i) 𝑒𝑥𝑝 = 2𝐸 − 1 (𝑒 = 2𝐸−1) to represent special numbers (𝑁𝑎𝑁 and 

±∞), and ii) 𝑒𝑥𝑝 = 0 to represent the zero and the denormalized numbers. The remaining cases are called ordinary 

numbers. 
 
 Ordinary numbers: 

Range of 𝑒: [−2𝐸−1 + 2, 2𝐸−1 − 1]. 
Max number:𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 × 2𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 

𝑚𝑎𝑥 = 1.11 … 1 × 22𝐸−1−1 = (2 − 2−𝑝) × 22𝐸−1−1 
Min. number: 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 × 2𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 

𝑚𝑖𝑛 = 1.00 … 0 × 2−2𝐸−1+2 = 2−2𝐸−1+2 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑅𝑎𝑛𝑔𝑒 =
𝑚𝑎𝑥

𝑚𝑖𝑛
=

(2 − 2−𝑝) × 22𝐸−1−1

2−2𝐸−1+2
= (2 − 2−𝑝) × 22𝐸−3 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑅𝑎𝑛𝑔𝑒 (𝑑𝐵) = 20 × log10{(2 − 2−𝑝) × 22𝐸−3} 

 
 Plus/minus Infinite: ±∞  

The 𝑒𝑥𝑝 field is a string of 1’s. This is a special case 
where 𝑒𝑥𝑝 = 2𝐸 − 1. (𝑒 = 2𝐸−1) 

±∞ = ±22𝐸−1
 

 
 

 Not a Number: 𝑁𝑎𝑁 
The 𝑒𝑥𝑝 field is a strings of 1’s. 𝑒𝑥𝑝 = 2𝐸 − 1. This is a 

special case where 𝑒𝑥𝑝 = 2𝐸 − 1 (𝑒 = 2𝐸−1). The only 

difference with ±∞ is that 𝑓 is a nonzero number. 

 
  

e significand 

E m

k p

m

e+bias[1,2E-2] f 

E p

biased exponent significand

e+bias =  2E-1 f=0 

E p

biased exponent significand

e+bias =  2E-1 f0 

E p

biased exponent significand
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biased exponent significandsign bit
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 Zero: 
Zero cannot be represented with a normalized 
significand 𝑠 = 1.00 … 0 since 𝑋 = ±1. 𝑓 × 2𝑒 cannot be 

zero. Thus, a special code must be assigned to it, where 
𝑠 = 0.00 … 0 and 𝑒𝑥𝑝 = 0. Every single bit (except for the 

sign) is zero. There are two representations for zero. 
The number zero is a special case of the denormalized numbers, where 𝑠 = 0. 𝑓 (see below). 

 
 Denormalized numbers: The implementation of these numbers is optional in the standard (except for the zero). Certain 

small values that are not representable as normalized numbers (and are rounded to zero), can be represented more precisely 
with denormals. This is a “graceful underflow” provision, which leads to hardware overhead.  

These numbers have the 𝑒𝑥𝑝 field equal to zero. The 

tricky part is that 𝑒 is set to −2𝐸−1 + 2 (not −2𝐸−1 + 1, 

as the 𝑒 + 𝑏𝑖𝑎𝑠 formula states). The significand is 
represented as 𝑠 = 0. 𝑓. Thus, the floating point number 

is 𝑋 = ±0. 𝑓 × 2−2𝐸−1+2. These numbers can represent 

numbers lower (in absolute value) than 𝑚𝑖𝑛 (the 

number zero is a special case).  

Why is 𝑒 not −2𝐸−1 + 1? Note that the smallest ordinary number is 2−2𝐸−1+2. 

The largest denormalized number with 𝑒 = −2𝐸−1 + 1 is: 0.11 … 1 × 22𝐸−1−1 = (1 − 2−𝑝) × 2−2𝐸−1+1.  

The largest denormalized number with 𝑒 = −2𝐸−1 + 2 is: 0.11 … 1 × 22𝐸−1−2 = (1 − 2−𝑝) × 2−2𝐸−1+2. 

By picking 𝑒 = −2𝐸−1 + 2, the gap between the largest denormalized number and the smallest normalized is smaller. Though 

this specification makes the formula 𝑒 + 𝑏𝑖𝑎𝑠 = 0 inconsistent, it helps in accuracy. 

 
 Depiction of the range of values: 
 
 
 
 
 
 
 
 
 
 
 
 The IEEE-754-2008 (revision of IEEE-754-1985) standard defines several representations: half (16 bits, E=5, p=10), single 

(32 bits, E = 8, p = 23) and double (64 bits, E = 11, p = 52). There is also quadruple precision (128 bits) and octuple 
precision (256 bits). You can define your own representation by selecting a particular number of bits for the exponent and 
significand. The table lists various parameters for half, single and double FP arithmetic (ordinary numbers): 

 

 
Ordinary numbers Exponent 

bits (E) 
Range of 𝒆 Bias 

Dynamic 
Range (dB) 

Significand 
range 

Significand 
bits (p) Min Max 

Half 2−14 (2 − 2−10)2+15 5 [−14,15] 15 180.61 dB [1,2 − 2−10] 10 
Single 2−126 (2 − 2−23)2+127 8 [−126,127] 127 1529 dB [1,2 − 2−23] 23 
Double 2−1022 (2 − 2−52)2+1023 11 [−1022,1023] 1023 12318 dB [1,2 − 2−52] 52 

 
 Rules for arithmetic operations: 

 𝑂𝑟𝑑𝑖𝑛𝑎𝑟𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 ÷  (+∞) = ±0 
 𝑂𝑟𝑑𝑖𝑛𝑎𝑟𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 ÷  (0) = ±∞ 
 (+∞) × 𝑂𝑟𝑑𝑖𝑛𝑎𝑟𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 = ±∞ 

 𝑁𝑎𝑁 + 𝑂𝑟𝑑𝑖𝑛𝑎𝑟𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑁𝑎𝑁 
 (0)  ÷  (0) = 𝑁𝑎𝑁  (±∞) ÷ (±∞) = 𝑁𝑎𝑁 
 (0)  ×  (±∞) = 𝑁𝑎𝑁  (∞) + (−∞) = 𝑁𝑎𝑁 

 
Examples: 

 F43DE962 (single): 1111 0100 0011 1101 1110 1001 0110 0010 

𝑒 + 𝑏𝑖𝑎𝑠 =  1110 1000 =  232 →  𝑒 =  232 − 127 = 105 
𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 =  1.011 1101 1110 1001 0110 0010 =  1.4837 
𝑋 =  − 1.4837 × 2105 = −6.1085 × 1031 

 
 007FADE5 (single): 0000 0000 0111 1111 1010 1101 1110 0101 

𝑒 + 𝑏𝑖𝑎𝑠 =  0000 0000 = 0 →  𝐷𝑒𝑛𝑜𝑟𝑚𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 → 𝑒 = − 126 
𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 =  0.111 1111 1010 1101 1110 0101 = 0.9975 
𝑋 =   0.9975 × 2−126 = 1.1725 × 10−38 
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ADDITION/SUBTRACTION 
 
𝑏1 = ±𝑠12𝑒1, 𝑠1 = 1. 𝑓1  𝑏2 = ±𝑠22𝑒2, 𝑠1 = 1. 𝑓2 

 
→ 𝑏1 + 𝑏2 = ±𝑠12𝑒1 ± 𝑠22𝑒2 

 
If 𝑒1 ≥ 𝑒2, we simply shift 𝑠2 to the right by 𝑒1 − 𝑒2 bits. This step is referred to as alignment shift. 

𝑠22𝑒2 =
𝑠2

2𝑒1−𝑒2
2𝑒1 

→ 𝑏1 + 𝑏2 = ±𝑠12𝑒1 ±
𝑠2

2𝑒1−𝑒2
2𝑒1 = (±𝑠1 ±

𝑠2

2𝑒1−𝑒2
) × 2𝑒1 = 𝑠 × 2𝑒 

 

→ 𝑏1 − 𝑏2 = ±𝑠12𝑒1 ∓
𝑠2

2𝑒1−𝑒2
2𝑒1 = (±𝑠1 ∓

𝑠2

2𝑒1−𝑒2
) × 2𝑒1 = 𝑠 × 2𝑒 

 
 Normalization: Once the operators are aligned, we can add. The result might not be in the format 1. 𝑓, so we need to 

discard the leading 0’s of the result and stop when a leading 1 is found. Then, we must adjust 𝑒1 properly, this results in 𝑒. 

 For example, for addition, when the two operands have similar signs, the resulting significand is in the range [1,4), thus 

a single bit right shift is needed on the significant to compensate. Then, we adjust 𝑒1 by adding 1 to it (or by left shifting 

everything by 1 bit). When the two operands have different signs, the resulting significand might be lower than 1 (e.g.: 
0.000001) and we need to first discard the leading zeros and then right shift until we get 1. 𝑓. We then adjust 𝑒1 by 

adding the same number as the number of shifts to the right on the significand. 
 

Note that overflow/underflow can occur during the addition step as well as due to normalization. 
 

Example: 𝑠3 = (±𝑠1 ±
𝑠2

2𝑒1−𝑒2
) = 00011.1010 

First, discard the leading zeros: 𝑠3 = 11.1010 

Normalization: right shift 1 bit: 𝑠 = 𝑠3 × 2−1 = 1.11010 

Now that we have the normalized significand 𝑠, we need to adjust the exponent 𝑒1 by adding 1 to it: 𝑒 = 𝑒1 + 1: 
(𝑠3 × 2−1) × 2𝑒1+1 = 𝑠 × 2𝑒 = 1.1101 × 2𝑒1+1 

 
Example: 𝑏1 = 1.0101 × 25, 𝑏2 = −1.1110 × 23 

𝑏 = 𝑏1 + 𝑏2 = 1.0101 × 25 −
1.1110

22 × 25 = (1.0101 − 0.011110) × 25 

 
1.0101 − 0.011110 = 0.11011. To get this result, we convert the operands to the 2C representation (you can also do 

unsigned subtraction if the result is positive). Here, the result is positive. Finally, we perform normalization: 
→ 𝑏 = 𝑏1 + 𝑏2 = (0.11011) × 25 = (0.11011 × 21) × 25 × 2−1 = 1.1011 × 24 

 
 Subtraction: This operation is very similar. 
 

Example: 𝑏1 = 1.0101 × 25, 𝑏2 = 1.111 × 25 
𝑏 = 𝑏1 − 𝑏2 = 1.0101 × 25 − 1.111 × 25 = (1.0101 − 1.111) × 25 

 
To subtract, we convert to 2C representation: 𝑅 = 01.0101 − 01.1110 = 01.0101 + 10.0010 = 11.0111. Here, the result 

is negative. So, we get the absolute value (|𝑅| = 2𝐶(1.0111) = 0.1001) and place the negative sign on the final result: 
→ 𝑏 = 𝑏1 − 𝑏2 = −(0.1001) × 25 

 
Example: 

 𝑋 = 50DAD000 – D0FAD000:  
50DAD000: 0101 0000 1101 1010 1101 0000 0000 0000 

𝑒 + 𝑏𝑖𝑎𝑠 = 10100001 = 161 → 𝑒 = 161 − 127 = 34  𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 = 1.10110101101 

50DAD000 = 1.10110101101 × 234 

 
D0FAD000: 1101 0000 1111 1010 1101 0000 0000 0000 

𝑒 + 𝑏𝑖𝑎𝑠 = 10100001 = 161 → 𝑒 = 161 − 127 = 34  𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 = 1.11110101101 

D0FAD000 = −1.11110101101 × 234 

 
𝑋 = 1.10110101101 × 234 + 1.11110101101 × 234 (unsigned addition) 

 
𝑋 = 11.1010101101 × 234 = 1.11010101101 × 235  
𝑒 + 𝑏𝑖𝑎𝑠 = 35 + 127 = 162 = 10100010 
𝑋 = 0101 0001 0110 1010 1101 0000 0000 0000 = 516AD000 

 

1.1 0 1 1 0 1 0 1 1 0 1 +

1.1 1 1 1 0 1 0 1 1 0 1

1 1.1 0 1 0 1 0 1 1 0 1 0

c 1
2
=1

c 1
1
=1

c 1
0
=1

c 9
=1

c 8
=1

c 7
=0

c 6
=1

c 5
=0

c 4
=1

c 3
=1

c 2
=0

c 1
=1

c 0
=0
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Example: 

 𝑋 = 60A10000 + C2F97000:  
60A10000: 0110 0000 1010 0001 0000 0000 0000 0000 

𝑒 + 𝑏𝑖𝑎𝑠 = 11000001 = 193 → 𝑒 = 193 − 127 = 66  𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 = 1.0100001 

60A10000 = 1.0100001 × 266 

 
C2F97000: 1100 0010 1111 1001 0111 0000 0000 0000 

𝑒 + 𝑏𝑖𝑎𝑠 = 10000101 = 133 → 𝑒 = 133 − 127 = 6  𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 = 1.11110010111 

C2F97000 = −1.11110010111 × 26 

 
𝑋 = 1.0100001 × 266 − 1.11110010111 × 26 

𝑋 = 1.0100001 × 266 −
1.11110010111

260
× 266 

Representing the division by 260 requires more than 𝑝 + 1 = 24 bits. Thus, we can approximate the 2nd operand with 0. 

 
𝑋 = 1.0100001 × 266 
𝑋 = 0110 0000 1010 0001 0000 0000 0000 0000 = 60A10000 

 
 

MULTIPLICATION 
 
𝑏1 = ±𝑠12𝑒1, 𝑏2 = ±𝑠22𝑒2 

 
→ 𝑏1 × 𝑏2 = (±𝑠12𝑒1) × (±𝑠22𝑒2) = ±(𝑠1 × 𝑠2)2𝑒1+𝑒2 

 
Note that 𝑠 = (𝑠1 × 𝑠2) ∈ [1,4). 
 

Example:  
𝑏1 = 1.100 × 22, 𝑏2 = −1.011 × 24, 

 
𝑏 = 𝑏1 × 𝑏2 = −(1.100 × 1.011) × 26 = −(10,0001) × 26, 

 
Normalization of the result: 
𝑏 = −(10,0001 × 2−1) × 27 = −(1,00001) × 27. 

 
Note that if the multiplication requires more bits than allowed by the representation (32, 64 bits), we have to do truncation 
or rounding. It is also possible that overflow/underflow might occur due to large/small exponents and/or multiplication of 
large/small numbers. 

 
Example:  
 𝑋 = 7A09D300  0BEEF000:  

7A09D300: 0111 1010 0000 1001 1101 0011 0000 0000 

𝑒 + 𝑏𝑖𝑎𝑠 = 11110100 = 244 → 𝑒 = 244 − 127 = 117  𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 = 1.00010011101001100000000   

7A09D300 = 1.000100111010011 × 2117 

 
0BEEF000: 0000 1011 1110 1110 1111 0000 0000 0000 

𝑒 + 𝑏𝑖𝑎𝑠 = 00010111 = 23 → 𝑒 = 23 − 127 = −104  𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 = 1.11011101111000000000000 

0BEEF000 = 1.11011101111 × 2−104 

 
𝑋 = 1.000100111010011 × 2117 × 1.11011101111 × 2−104 
𝑋 = 10.00000010100011010111111101 × 213 = 1.000000010100011010111111101 × 214 = 1.6466 × 104 
𝑒 + 𝑏𝑖𝑎𝑠 = 14 + 127 = 141 = 10001101 

 
𝑋 = 0100 0110 1000 0000 1010 0011 0101 1111 = 4680A35F (four bits were truncated) 
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DIVISION 
 

𝑏1 = ±𝑠12𝑒1, 𝑏2 = ±𝑠22𝑒2 

 

→
𝑏1

𝑏2
=

±𝑠12𝑒1

±𝑠22𝑒2
= ±

𝑠1

𝑠2
2𝑒1−𝑒2 

 

Note that 𝑠 = (
𝑠1

𝑠2
) ∈ (1/2,2) 

Here, the result might require normalization. 
 
Example: 
𝑏1 = 1.100 × 22, 𝑏2 = −1.011 × 24 

 

→
𝑏1

𝑏2
=

1.100 × 22

−1.011 × 24
= −

1.100

1.011
2−2 

1.100

1.011
: unsigned division, here we can include as many fractional bits as we want. 

 
With 𝑥 = 4 (and 𝑎 = 0) we have: 

1100𝟎𝟎𝟎𝟎

1011
 1100𝟎𝟎𝟎𝟎 = 10101(1011) + 11 

𝑄𝑓 = 1,0101, 𝑅𝑓 = 00,0011 

 
If the result is not normalized, we need to normalized it. In this example, we do not need to do this. 

→
𝑏1

𝑏2
=

1.100 × 22

−1.011 × 24 = −1.0101 × 2−2 

 
Example 
 
 𝑋 = 49742000  40490000:  

49742000: 0100 1001 0111 0100 0010 0000 0000 0000 

𝑒 + 𝑏𝑖𝑎𝑠 = 10010010 = 146 → 𝑒 = 146 − 127 = 19  𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 = 1.11101000010000000000000 

497420000 = 1.1110100001 × 219 

 
40490000: 0100 0000 0100 1001 0000 0000 0000 0000 

𝑒 + 𝑏𝑖𝑎𝑠 = 10000000 = 128 → 𝑒 = 128 − 127 = 1  𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 = 1.10010010000000000000000 

0BEEF000 = 1.1001001 × 21 

 

𝑋 =
1.1110100001 × 219

1.1001001 × 21  

 
Alignment: 

1.1110100001

1.1001001
=

1.1110100001

1.1001001000
=

11110100001

11001001000
 

 

Append 𝑥 =  8 zeros: 
11110100001𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎

11001001000
 

 
Integer division 

𝑄 = 100110110, 𝑅 = 1011101000 → 𝑄𝑓 = 1.00110110 

 
 
 
 
 
 
 

Thus:  𝑋 =
1.1110100001×219

1.1001001×21 = 1.0011011 × 218 = 1.2109375 × 218 = 317440 

𝑒 + 𝑏𝑖𝑎𝑠 = 18 + 127 = 145 = 10010001 

 
𝑋 = 0100 1000 1001 1011 0000 0000 0000 0000 = 489B0000 

 

0000000000100110110

1111010000100000000

11001001000

101011001000

11001001000

100100000000

11001001000

101011100000

11001001000

100100110000

11001001000

10111010000

11001001000


